Persistent luminescence tomography for small animal imaging
نویسندگان
چکیده
منابع مشابه
Design of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies
Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...
متن کاملNumerical simulation of x-ray luminescence optical tomography for small-animal imaging.
X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algori...
متن کاملOptimizing in vivo small animal Cerenkov luminescence imaging.
In vivo Cerenkov luminescence imaging is a rapidly growing molecular imaging research field based on the detection of Cerenkov radiation induced by beta particles when traveling though biological tissues. We investigated theoretically the possibility of enhancing the number of the detected Cerenkov photons in the near infrared (NIR) region of the spectrum. The analysis is based on applying a ph...
متن کاملUnsupervised analysis of small animal dynamic Cerenkov luminescence imaging.
Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with (32)P-ATP and (18)F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was i...
متن کاملHyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Optics Express
سال: 2017
ISSN: 2156-7085,2156-7085
DOI: 10.1364/boe.8.001466